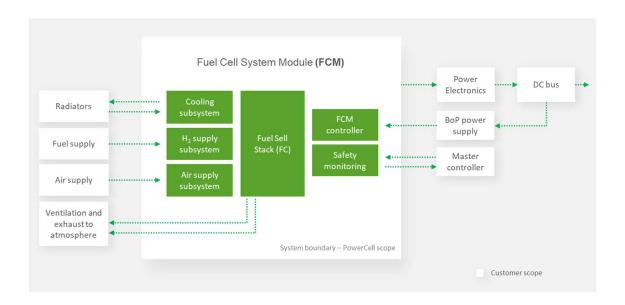


MS-100 Fuel Cell System


Technical description

PowerCell MS-100

Interface description

Electrical connections N		Mech	Mechanical connections	
1	Ethernet	8	Components cooling inlet	
2	HV supply	9	Components cooling outlet	
3	24V supply	10	Air inlet	
4	Negative power output terminal	11	Exhaust	
5	Grounding point	12	Degassing port	
6	External signal interface	13	Fuel cell stack cooling inlet	
7	Positive power output terminal	14	Fuel cell stack cooling outlet	
		15	Fuel inlet	

PowerCell MS-100

Configuration ¹²

Max net power	100 kW
Dimensions	606 x 696 x 674 mm
Volume	284
Weight	170 kg

Performance

Gross output at rated power	292 V / 380 A
Voltage output (peak power EOL to OCV ³ BOL)	250 - 500 V, max 570 VDC
Current output	60 - 420 A ⁴
Ramp-up speed	50 A/s and 13 kW/s
System heat output	up to 140 kW + 10 kW ⁵
Coolant outlet temperature	80°C
Fuel quality	Pure hydrogen: ISO 14867-2 and SAE J2712
Fuel inlet pressure	8-12 bar(g) ⁶
Fuel consumption	1250 NLPM ⁷
Efficiency (peak, BOL)	58% ⁸
Efficiency (rated power, BOL)	45% ⁸
Start-up time	Off to standby: 10s, Standby to run: 10s
Lifetime	20 000 h ⁹
Communication and control	CAN bus 500 kpbs

Environment

Altitude	0 to 2000 meters
Location	Pollution degree 3 or better
Temperature	-30 to 45°C ¹⁰
Humidity	30 to 95% relative humidity; non-condensing
Regulation and standards ¹¹	E/ECE/324/Rev.2, /Add.99/Rev.2, FMVSS 305-01, ISO 23273:2013, SAE J1766:201401, SAE J2578:201408
IP classification	IP54

¹ Target values, the actual value is application dependent.

² Customized configurations can be made, feasibility evaluated at request.

³ OCV = Open Circuit Voltage (i.e. in no load condition, 0 A).

⁴ Other limitations might apply from external power electronics.

⁵ Fuel cell stack and BoP components (cathode compressor + intercooler).

⁶ 3-8bar(g) is feasible, but low hydrogen feed pressure affects system performance.

⁷ Hydrogen consumption at 100kW Beginning of Life.

⁸ Excluding losses from DCDC and external cooling system (e.g. radiator fans etc.).

⁹ Expected lifetime.

¹⁰ Start-up from sub-zero degrees requires external power assistance.

 $^{^{\}rm 11}$ Designed with respect to the following standards.

PowerCell MS-100

Technical specifications

Fuel	
Fuel composition	Pure hydrogen, ISO 14687:2019 and SAE J2719_201511 $^{\rm 1}$
Supply pressure	8-12 bar(g), rated 10 bar(g) ²
Supply temperature	5 – 70°C, rated 10°C
Fuel consumption	60 – 1500 NLPM

Cathode inlet	
Quality	Filtered air
Pressure	Atmospheric pressure
Temperature	-30 - 45℃
Flowrate	900 - 6800 NLPM ³
Contaminants	See PowerCell S3 Extended Data.

<pre>chaust</pre>	
Pressure	Atmospheric pressure ⁴
Temperature	< 90°C, rated 80°C
Flowrate	< 6800 NLPM ³

Cooling	Component cooling	Fuel cell stack cooling
Flowrate	< 60 l/min	< 170 l/min
Quality	50/50% Water/Glycol ⁵	Glysantin [®] FC G20-00/50 ⁵
Inlet pressure	< 1 bar(g)	< 1.4 bar(g)
Inlet temperature	< 60°C	5 – 65°C
Outlet temperature	< 70°C, rated 26°C	< 90°C
Heat exchanger capacity	11 kW ⁶	< 140 kW

Electrical	
HV supply	340 – 849 VDC, max. current = 50 Arms, < 20 kW
24 V supply	< 3 kW
Load requirements	
Forward leakage current	< 1 µA
Reverse current	< 1 µA
Ripple current	< 8 A, peak to peak
Classification	
Appliance class	Max. class II ⁷
Pollution degree	Max. 2 ⁸
Overvoltage category	Max. 2 ⁹

¹ The fuel quality requirements comply with ISO 14687-2, SAE J2719 and T/CECA-G 0015 2017.

² Customized configurations can be made, feasibility evaluated at request, stable pressure required.

 $^{^{\}rm 3}$ Normal conditions at 0°C and 1 atm.

⁴ Piping shall be done in a way that atmospheric pressure is not exceeded by 50 mbar at the given flowrate.

⁵ The material compatibility in the external cooling loop needs to be verified.

⁶ Capacity depends on set-up of external cooling loop, incl. cooling for DCDC converter.

⁷ IEC 61140

⁸ IEC/EN 60950-1

⁹ IEC/EN 60950-1